

Determine the extreme values of each function
21)
$$f(x) = x^2 - 4x + 1$$
 on [0,4]
56) $f(x) = 3e^x - e^{2x}$ on [-.5,1]

Determine the local extrema of the function
3(3)
$$f(x) = x^4 - 4x^{3/2}$$

3(5) $f(x) = x^{-2} - 4x^{-1}$ $x > 0$

Determine the relative extrema of the function
37)
$$f(x) = \frac{1}{x^2 + 1}$$

32) $f(x) = x^5 + x^3 + x$

CALCU	LUS: by	Rogawski Chapter 4.4: Using the second Derivative	
		What you'll Learn About How to find intervals of concavity How to find local extrema using the second derivative	
		Determine the intervals of concavity and the inflection points A) $y = x^2$	
		B) $y = -x^2$	
		5) $f(x) = 10x^3 - x^5$	

Determine the intervals of concavity and the inflection points							
$f(-) = \frac{2}{5}$							
A) $f(x) = x^{-1}$							

Determine the local extrema using the second derivative test
A)
$$y = x^2$$

B) $y = -x^2$
Determine the local extrema using the second derivative test
25) $f(x)=x^3-12x^2+45x$
27) $f(x)=3x^4-8x^3+6x^2$

5)
$$f(x)=10x^{3}-x^{5}$$

CALCULUS: Graphical, Numerical, Algebraic by Finney, Demana, Watts and Kennedy Chapter 4: Applications of Derivatives Summary of features of graphs using calculus

Determine the maximum and minimum velocity of the function given
2)
$$v(t)=t^3-3t^2+4$$
 [0,4]
Determine the maximum and minimum acceleration of the function
given
5) $v(t)=4t^2-6t^3$ [0,3]

: Applications of Derivatives 4.4: Optimization					
What you'll Learn About: w to use derivatives to solve real world problems					
A rectangle is to be inscribed under one arch of the sine curve. What is the largest area the rectangle can have, and what dimensions give that area.					
A rectangle is to be inscribed between the curve $y = 25 - x^2$ and the x-axis. What is the largest area the rectangle can have, and what dimensions give that area.					

CALCULUS: Graphical, Numerical, Algebraic by Finney, Demana, Watts and Kennedy Chapter 4: Applications of Derivatives 4.4: Optimization

CALCULUS: Graphical, Numerical, Algebraic by Finney, Demana, Watts and Kennedy

What you'll Learn About: How to sketch graphs of $f(x)$, $f'(x)$, and $f''(x)$	
40a) $f(2) = 3$	
f'(2) = 0	
f'(x) > 0 for x < 2	
f'(x) < 0 for x > 2	
40d) $f(2) = 3$	
f'(2) = 0	
$f'(x) > 0$ for $x \neq 2$	

CALCULUS: Graphical, Numerical, Algebraic by Finney, Demana, Watts and Kennedy Chapter 4: Applications of Derivatives Sketching graphs p. 203

х	Y	Curve
x < -2		Increasing, concave down
-2	1	Horizontal tangent
-2 < x <1		Decreasing, concave down
1/2	-1	Inflection Point
1	-4	Horizontal Tangent
1 < x < 3		Increasing, concave up
3	5	Inflection Point
4	7	Horizontal tangent
x > 4		Increasing, concave up

Sketch a continuous curve if the function below is an even function that is continuous on $\begin{bmatrix} -3 \\ 3 \end{bmatrix}$					
is continuous on [-5, 5]					
X	0	1	2	3	
f	0	2	0	-2	
f'	3	0	DNE	-3	
<i>f</i> "	0	-1	DNE	0	
x	0 < x <	1 1 <	< x < 2	2 < x	< 3
f	+		+	-	
f'	+		-	-	
<i>f</i> "	-		-	-	

Summary of interpreting Graphs

		Given graph of f(x)	Given graph of $f'(x)$	Given graph of $f''(x)$
f(x) has a Critical Point	f'(x) = 0 f'(x) Und	Slope of $f(x) = 0$ Look for max/mins of $f(x)$	Find the x-intercepts of the $f'(x)$ graph	Х
f(x) increasing	f'(x) > 0	Slope of f(x) is positive Look where f(x) is increasing	Find where the $f'(x)$ graph is above the x-axis	Х
f(x) decreasing	f'(x) < 0	Slope of f(x) is negative Look where f(x) is decreasing	Find where the $f'(x)$ graph is below the x-axis	Х
f(x) has a possible inflection point	f''(x) = 0 f''(x) Und	Trace f(x) see where the concavity changes	Find where the $f'(x)$ graph changes slope These should be the max and mins of the $f'(x)$ graph	Find the x- intercepts of the $f''(x)$
f(x) is concave up	f''(x) > 0	Trace f(x) see when the graph is concave up	Find where the $f'(x)$ graph is increasing Slope of $f'(x) > 0$	Find where the graph of $f''(x)$ is above the x-axis
f(x) is concave down	f''(x) < 0	Trace f(x) see when the graph is concave down	Find where the $f'(x)$ graph is decreasing Slope of $f'(x) < 0$	Find where the graph of $f''(x)$ is below the x-axis
Local Maximum		Look where the graph of f(x) changes from increasing to decreasing	Look where the graph of $f'(x)$ crosses the x-axis and moves from above to below the axis	X
Local Minimum		Look where the graph of $f(x)$ changes from decreasing to increasing	Look where the graph of $f'(x)$ crosses the x-axis and moves from below to above the axis	X
Points of Inflection		Trace f(x) see where the concavity changes	Find where the $f'(x)$ graph changes slope These should be the max and mins of the $f'(x)$ graph	Find where the graph of $f''(x)$ crosses the x- axis and moves from above to below the x-axis or below to above the axis

Summary of Characteristics of graphs

If f' is undefined or if f' = 0, this is a Critical Point (Possible Local Max or Min)

If f' > 0 the original function f is increasing

If f' < 0 the original function f is decreasing

If f'' is undefined or if f'' = 0, this is a possible Inflection Point (Change in concavity)

If f'' > 0 the original function f is concave up

If f'' < 0 the original function f is concave down

Anytime the graph changes concavity you have an inflection point

To find intervals of increase and decrease

- 1. Find the first derivative
- Set the first derivative equal to zero (These will be your critical points)
 Don't forget to check when the first derivative is undefined
- 3. Pick values to the left and right of your critical points
- 4. If f' > 0 the original function f is increasing
- 5. If f' < 0 the original function f is decreasing

To find intervals of concavity

- 1. Find the second derivative
- Set the second derivative equal to zero (These are your possible inflection points)
 Don't forget to check when the second derivative is undefined
- 3. Pick values to the left and right of your possible inflection points
- 4. If f'' > 0 the original function f is concave up
- 5. If f'' < 0 the original function f is concave down
- 6. If f'' changes sign that is a point of inflection

To find a local/relative maximum or local/relative minimum

Use the first derivative test

- 1. If your original function changes from increasing to decreasing you have a local maximum
- 2. If your original function changes from decreasing to increasing you have a local minimum

Use the 2nd derivative test

- 1. Plug your critical points into your second derivative
- 2. If your original function is concave up at the critical point, the critical point is a local min
- 3. If your original function is concave down at the critical point, the critical point is local max

Absolute Max/Min

- 1. Plug your critical points and your endpoints back into the original equation
- 2. The biggest value is your absolute max
- 3. Your smallest value is your absolute min